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Abstract

The early nonlinear phase of Rayleigh-Taylor growth is typically described in terms of the classic

Layzer model in which bubbles of light fluid rise into the heavy fluid at a constant rate determined

by the bubble radius and the gravitational acceleration. However, this model is strictly valid only

for planar interfaces and hence ignores any effects which might be introduced by the spherically

converging interfaces of interest in inertial confinement fusion. Here a generalization of the Layzer

nonlinear bubble rise rate is given for a self-similar spherically converging flow of the type studied by

Kidder. A simple formula for the bubble amplitude is found showing that, while the bubble initially

rises with a constant velocity similar to the Layzer result, during the late phase of the implosion,

an acceleration of the bubble rise rate occurs. The bubble rise rate is verified by comparison with

numerical hydrodynamics simulations.
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Applications in inertial confinement fusion (ICF) and a variety of astrophysical phe-

nomena have motivated intensive investigations of the Rayleigh-Taylor (RT) instability, the

unstable acceleration of a heavy fluid by a light fluid ([1] and references therein). The

early nonlinear stage of the RT instability has traditionally been described in terms of the

Layzer model [2] in which bubbles of light fluid rise into the heavy fluid with a constant

velocity while spikes of heavy fluid fall into the light fluid. While Layzer’s model simply

and quite accurately describes the nonlinear phase of RT growth prior to turbulent mixing,

it is strictly valid only for planar fluid interfaces. Given that many applications involve

either spherically converging or diverging flows, it is relevant to consider how the nonlinear

growth phase might be modified at a spherical interface. Extensive numerical modeling of

instability growth on spherical interfaces has been performed, e.g., [3], but so far without

a theoretical foundation similar to that provided in the planar case by the Layzer model.

Here an analytical calculation analogous to Layzer’s model is presented for the spherically

convergent RT instability. Beyond revealing interesting physical effects and the scaling prop-

erties introduced by sphericity, uncovering the spherical analogue of the Layzer model also

provides a rigorous and relevant potential test problem for hydrodynamics simulations of

spherical flows.

The essence of the Layzer model is to liken the confining effect of neighboring RT bubbles

to an effective cylindrical boundary condition enclosing a rotationally symmetric central

bubble with its corresponding spikes of heavy fluid running down the cylindrical walls.

Asserting that the flow be incompressible and irrotational, the fluid velocity may be described

as the gradient of a potential function φ given by a solution of Laplace’s equation. For a

light fluid of infinitesimal density (Atwood number of A = 1), the boundary conditions

on the bubble surface are that the pressure be uniform and that the interface (denoted by

S = 0 below) move with the flow. The remaining boundary conditions are that the fluid be

at rest at infinity and that there be no flow through the cylindrical walls. A simplification is

possible for the planar problem in that, since the bubble rises with a constant velocity, it is

convenient to transform the problem to a frame moving with the bubble in which the flow

near the bubble apex is static. By keeping only the lowest order mode in the expansion of the

velocity potential in this frame and expanding the Bernoulli integral on the bubble surface

to second order in the radial distance from the cylindrical axis, a solubility condition of this

equation gives the bubble velocity as u ≃
√

g r0/k0. Here, g is the inertial acceleration of the
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interface or an effective gravitational acceleration, r0 is the bubble radius or perturbation

wavelength, and k0 is the first root of the Bessel function J1. Since this solution includes only

the lowest mode of the velocity potential and is carried only to second order in the distance

from the axis, only the flow near the axis is described and not the behavior of the spikes near

the walls. The effects of compressibility, bubble merging, density gradients, A < 1, Kelvin-

Helmholtz roll-up, etc. are not included in the model. Nevertheless, the theoretical value for

u compares quite favorably with numerical simulations and experimental measurements.

In adapting Layzer’s model to spherical interfaces, the first modification is to replace

the cylindrical coordinates and boundary conditions by spherical coordinates and conical

boundary conditions to capture the lowest order effect of spherical convergence. Immediately

with this modification, however, the problem is complicated in that the bubble no longer

rises with a constant velocity and transforming to a frame where the flow near the bubble

apex is static is no longer trivial. The calculation must then be carried through for a time-

dependent flow and a time-evolving interface. Indeed, calculating the rate of rise of a bubble

enclosed by a narrow cone opening downward in a uniform gravitational field shows that

the bubble nonlinearly decelerates as it rises. This result comports with the Layzer model

in that, as the bubble rises, the effective radius enclosing the bubble shrinks and the bubble

must then rise at an ever slower velocity according to the Layzer formula.

More importantly in developing the spherical case, whereas an interface subject to a uni-

form gravitational acceleration is precisely equivalent to a uniformly accelerated interface in

the planar case, this equivalence is no longer true for a spherical interface. A uniform grav-

itational field in the latter case is the equivalent of setting the entire sphere (e.g., including

the center of the sphere) into accelerated motion which is not relevant to instabilities of

the imploding interface. In place of a uniform gravity, one consistent representation of an

accelerated spherical interface is to consider the growth of perturbations in a spherical coor-

dinate system accelerating smoothly toward the origin, i.e., transform to a (primed) frame

moving with respect to the fixed (unprimed) frame according to {r′ = r/h(t), θ′ = θ, t′ = t}.
Here h(t) is the scale factor describing the radial contraction of the primed coordinates

with respect to the unprimed coordinates. The character of this transformation is readily

identified with that of self-similar spherically converging flow, and the notation is motivated

in connection with the flow studied by Kidder [4]. Under this transformation, the velocity

potential, Bernoulli’s equation, and the equation for the motion of the bubble surface S
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become

φ′ = h−2φ +
(r′)2

2

ḣ

h
+ Φ(t′)

F (t′) = φ′
t′ +

|∇′φ′|2
2

− γ

γ − 1

p′

ρ′
+ 2

ḣ

h
φ′ − (r′)2

2

ḧ

h

∣

∣

∣

∣

∣

S′=0

0 = S ′
t′ + ~v′ · ∇′S ′ . (1)

Here subscripts denote partial differentiation, dots denote total derivatives with respect to

time, and Φ(t′) and F (t′) are arbitrary functions of time. The inertial terms appearing in

the Bernoulli integral play the role of gravitational potentials in the interface frame but

correctly incorporate the spherical nature of the flow. Consistent with the spherical con-

vergence of the flow, compressibility of the fluid is allowed in this model with γ the usual

ratio of specific heats. This is a distinction from the incompressible Layzer model. Forbid-

ding compressibility in converging flows (as in the linear model of Plesset [5]), necessitates

unphysical singularities of the velocity field at r = 0.

To develop an analogue of Layzer’s analysis, these equations are to be solved in a second

order neighborhood of the bubble apex (i.e., to O(θ2) in spherical polar coordinates aligned

with the bubble) and including only the lowest order mode in the expansion of the velocity

potential in the interface frame. Appropriate to a spherical coordinate system, the velocity

potential ansatz in the primed frame is

φ′ = A(t′)(r′)νPν(cos θ′)

⇔ φ = −r2

2

ḣ

h
+ Ã(t)rνPν(cos θ) . (2)

Here A(t) is the time dependent nonlinear perturbation amplitude to be determined and ν

is the spherical mode number determined by the boundary condition that there be no flow

through the cone walls. The function Φ(t′) can be incorporated into F (t′) without loss of

generality. Note that in the fixed (unprimed) frame, the velocity potential is separated into

a compressible component determined by the background spherically converging flow and an

incompressible nonlinear perturbation, while in the primed frame the flow is by construction

incompressible. Such a separation was initially discussed by Book and Bernstein [6] in an

analysis of the linear growth of perturbations on a self-similar implosion.

Characterizing the bubble in the moving frame (dropping the primes) by S = R(θ, t)− r

with R(θ, t) = a(t) + b(t)θ2 + O(θ4) and substituting the chosen φ into the last of Eqs. (1)

4



yields

0 = St + ~v · ∇S

= ȧ + νAaν−1 + θ2
{

ḃ + ν(ν − 1)Aaν−2b+

+ν(ν + 1)Aaν−2b − ν2(ν + 1)

4
Aaν−1

}

+ O(θ3) .

Requiring a solution at the first two orders in θ then determines the perturbation amplitude

A(t) and the bubble curvature b(t) in terms of the bubble amplitude a(t):

A = −1

ν
a1−ν ȧ and b =

ν

4

ν + 1

2ν − 1
a .

Consistent with the self-similarity of the background flow, the bubble shape then has a

separable dependence in angle and time,

R(θ, t) = a(t)
{

1 +
ν

4

ν + 1

2ν − 1
θ2
}

+ O(θ4) . (3)

Since the RT perturbation of the velocity potential is incompressible, the fluid density

evolves only due to the radially compressing component of the flow

ρ = exp
∫

dt∇2φ = ρ0(~r0)h
−3(t)

where ρ0(~r0) is the Lagrangian value of the fluid density, i.e., density of the fluid particle

at its initial location, and the integral is computed along the Lagrangian trajectory of the

fluid particle. For an isentropic implosion, then also p = p0(~r0)[ρ/ρ0(~r0)]
γ. Substituting the

above results for A(t), b(t), ρ, and p into the Bernoulli integral on the interface S = 0 (again

in the moving frame) and expanding to O(θ2) leads at the lowest orders in θ to two coupled

equations for the implosion scale factor h(t) and bubble amplitude a(t):

O(θ0) : −ν
2

(

R0

tc

)2
h1−3γ = aä +

(

1 − ν

2

)

ȧ2 + 2
ḣ

h
aȧ +

ν

2

ḧ

h
a2

O(θ2) : 0 = aä +
1 − 2ν

2
ȧ2 + 2

ḣ

h
aȧ − ν

ν − 1

ḧ

h
a2 . (4)

The constants R0 and tc set the length and time scales of the implosion.

In principle, the O(θ2) equation should be solved for a(t) as a functional of h(t), and the

result substituted into the O(θ0) equation to find a single self-consistent solution for h(t).

Such an exact solution to Eqs. (4) could not be found. However, the O(θ2) equation from
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Eqs. (4) may in general be put in Schrödinger form and, for a given slowly evolving h(t),

the approximate bubble amplitude calculated by the WKB method:

a(t) ∼ exp

{

2 Λ(ν)
∫ t dt

tc
h(1−3γ)/2

}

with Λ(ν)
.
=
√

ν(3 − 2ν)/2(1 − ν) − 1/(3−2ν). This expression for a(t) could be substituted

into the O(θ0) equation, and an iterative approximation for h(t) developed. A more tractable

approach is to note that, in the limit of large ν, the O(θ0) equation reduces to Kidder’s

equation for the scale factor of an unperturbed self-similar implosion [4]. Specializing to the

case of ν ≫ 1, it is then acceptable to approximate h ≃ hKidder. For γ = 5/3, the Kidder

scale factor is h(t) =
√

1 − (t/tc)2 with tc the time of total collapse to the origin of the

unperturbed flow, and hence

a(t) ∼ R0

(

1 + t/tc
1 − t/tc

)−1/2
√

ν

, ν → ∞ . (5)

Here the location of the bubble apex has been initialized to the outer radius of the sphere R0

for the unperturbed problem. Note that, as in the unperturbed one-dimensional implosion

studied by Kidder, the scale factor of the implosion h(t) cannot be arbitrarily specified to

generate any desired acceleration history but (due to the self-similar symmetry assumed for

the flow) must be self-consistently determined by the boundary conditions and the pertur-

bation history a(t) via Eqs. (4). Though this allows only a specific acceleration history h(t)

for the spherical interface (approaching that of Kidder in the limit of ν ≫ 1), this constraint

appears hardly more restrictive for potential applications than the assumption of a constant,

uniform gravity is in applying the Layzer model for planar interfaces.

As should be expected, in the limit ν → ∞ (i.e., for narrow cones) and for early times

t/tc ≪ 1 (before significant convergence has occurred), the bubble height in the moving

frame and the bubble curvature reduce to those given by the Layzer model:

1 − a(t)

R0
∼ 1√

ν

t

tc
and

1

2

Rθθ

R0
∼ ν

8
.

These results can be connected to the Layzer formulae by using the asymptotic form

Pν(cos θ) ∼ J0 [(2ν + 1) sin(θ/2)] , ν → ∞ from which follows ν ∼ k0/β with r0 ≃ R0β for β

the half-angle of the cone and r0 its effective radius. In these units, the initial acceleration

of the interface is ḧ(0) = R0/t
2
c .
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Interestingly, the formula found for the bubble amplitude is functionally similar to the

result earlier found by Kidder [7] for the linear growth of perturbations during a homoge-

neous implosion. However, these results (the former for the distance of the bubble apex

from the center of the implosion and the latter for the linear regime amplitude of a single

mode perturbation on the outside of the imploding sphere) differ crucially in the exponent’s

dependence on the mode number: during the linear regime, the exponent scales as the square

root of the perturbation mode number while as the reciprocal of the square root of the mode

number during the nonlinear regime, in both cases analogous to the scalings for a planar

interface. The method of calculating the bubble amplitude via the WKB technique is also

superficially similar to that followed by Hattori, et al. [8], but again this latter calculation

applies only to the linear regime and the scaling with mode number is reciprocated.

Eq. (5) was verified by comparing with full two-dimensional arbitrary Lagrangian-

Eulerian (ALE) hydrodynamics simulations run with the HYDRA code [3]. For a given

mode number ν, a simulation was initialized with slip boundary conditions on the cone

walls and a Kidder-type pressure source applied through a low density pusher material (ap-

proximating A = 1) to the fluid interface. The radial density profile within the dense fluid

was initialized as prescribed by Kidder [4], and the interface was nonlinear perturbed in

accordance with the initial theoretical bubble shape Eq. (3). Considerable ALE relaxation

of the mesh was required throughout the simulation. Care also had to be taken in initializing

the proper fluid velocities according to the velocity potential Eq. (2) (in the fluid as well as

the low density pusher material).

An example sequence of snapshots of the bubble growth in the simulation with ν = 80 is

shown in Fig. 1. The dense fluid is shown in red and the low density pusher appears in blue.

Mixing of the fluids due to the ALE relaxation of the mesh results in the yellow-colored

boundary zones. The theoretical bubble shape (as imposed at t = 0) is denoted by the

dark line. Throughout the simulation, the interface curvature at the bubble apex appears to

be in good agreement with the theoretical prediction. Similar results were found for larger

and smaller values of ν. Since the theory is valid only to O(θ2) the growth of the spike

along the wall of the cone is not captured. A perfectly analogous discrepancy applies for the

description of spikes in the Layzer model.

Fig. 2 illustrates the normalized bubble height as measured from the HYDRA simula-

tion in comparison with the WKB solution (Eq. (5)), the result of numerically integrating
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Eqs. (4), and the Layzer prediction. Following initially linear growth with time, the HY-

DRA, numerical, and WKB results all demonstrate substantially faster bubble growth than

predicted by the Layzer model. Good agreement between the simulation results and the

theoretical expectations is seen through most of the implosion. With increasing ν, closer

agreement between the WKB and numerical solutions is seen for all t/tc. Also as predicted by

Eq. (5), greater acceleration of the bubble velocity over the Layzer prediction was observed

for lower values of ν.

In summary, an analogue of the Layzer nonlinear RT bubble model has been presented

for a spherically converging flow. Consistently describing an accelerating, spherically con-

verging interface was found to necessitate assuming a Kidder-type self-similar background

flow within a conical boundary in place of the uniform gravity and cylindrical boundaries

assumed in the Layzer model. An approximate solution was found for the growth of the

bubble height indicating an initial phase with linear growth in time at the rate predicted

by Layzer followed by a strong acceleration of the bubble growth rate late in the implosion.

Good agreement for the bubble shape and bubble growth rate were found by comparison

with full, two-dimensional hydrodynamics simulations.
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Fig. 1 Snapshots of bubble growth from a HYDRA simulation for ν = 80. Red denotes the

dense fluid and blue the low-density pusher. To illustrate the bubble evolution with

time, each snapshot is centered vertically about the location of the bubble apex at the

corresponding time. The computed bubble shape near the axis of the cone agrees well

with the theoretical prediction (Eq. (3)) shown as the thick dark line.

Fig. 2 Comparison of normalized bubble heights in the frame moving with the interface

from the HYDRA simulation of Fig. 1, the WKB solution (Eq. (5)), the result of

numerically integrating Eqs. (4), and the Layzer prediction.
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FIG. 1:
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FIG. 2:
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